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1 Introduction

Cryptocurrencies and Bitcoin (BTC) are a hot topic currently because of various reasons. To some, cryptocurrencies
are seen as the future of money as they are a form of decentralized currency whose value is fixed by complex mathe-
matical algorithms that are part of the “blockchain”. People can attain BTC by “mining” which is a process in which
computers run one algorithm continuously until a ”coin” is released from the blockchain. That coin and the effort
that went into mining it is noted in the proof of work, which is essentially how all BTC are verified. Every coin has a
unique documentation that shows each step taken for that coin to have been mined and claimed. Theoretically, there
is a limit to how many BTCs can be mined which supposedly provides inherent value to each coin because they are
finite resources. For others, BTC and cryptocurrencies are viewed as a purely speculative asset that is highly volatile
and useful for anonymous transactions and money laundering. Most BTC transactions are purely speculative, that

is, buying and selling thereby influencing market price [1]. Aside from the legal and economic aspects of cryptocur-
rencies, the largest issue with cryptocurrencies is the energy consumption associated with mining cryptocurrencies
and conducting the "proof of work” algorithms. Mining requires hundreds of computers running a set list of algo-
rithms continuously in the hopes of attaining a coin. The proof of work method is computationally expensive and this
is evident in the energy consumption of cryptocurrencies globally [3]. In recent years, BTC options trading has be-
come popular and is only expanding. BTC options became widely accepted in 2017, when the Chicago Mercantile
Exchange (CME) announced their plans to create BTC futures. BTC options operate the same as normal options but
are more expensive due to the implied volatility inherent in BTC. Because BTC is so volatile, its implied volatility is
very high which causes the BTC option prices to be very high [2].

The goal of this project is to accurately predict Bitcoin (BTC) option prices and closing prices using a combination
of Black-Scholes Merton formulas, Neural Network Modeling, and other stochastic processes. First I will analyze
the historical data for Bitcoin to determine if the data is mean reverting, how much volatility is in the market, and

to derive important statistical values such as mean, standard deviation, skewness, and excess kurtosis. These de-
rived parameters will be used in various ways to model the data in hopes of accurately predicting BTC options and
BTC closing prices. The mean, variance, and volatility will be needed to apply the Black Scholes Merton and Heston
Options Pricing Methods [4]]. A stochastic volatility process will be applied to derive simulated daily returns using
Markov Chain Monte Carlo (MCMC) sampling and the results will be compared to the true returns [[12].

In part 1 of this project I will conduct a historical data analysis and use various statistical tests to analyze the data and
to determine what model might be best for predicting option prices. I will obtain the data from Yahoo Finance using
the R package quantmod and plot the overall historical data as a time series. We will also derive the daily returns and
plot those to get a sense of if there is some mean reversion. To test how much mean reversion there is in our data, I
will employ the Augmented Dickey Fuller (ADF) Test and the Hurst Test. I will also solve for mean reversion if the
results of the ADF and Hurst Tests imply some stationarity in the returns. Figure[T]is the historical time series data
for the BTC Closing price from 2018 to 2021. As we can see in the historical time series graph for BTC (Figure 1)),
there is an enormous jump in BTC price starting just after July 1, 2020. I anticipate that this jump in BTC price will
make it near impossible to get an accurate prediction for models trained on the initial part of the data (2018-2020).
However, I hope that the model can accurately predict the general trend in the BTC price.
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Figure 1: Historical BTC Closing Price January 1 2018 to September 23 2021

In part 2 of this project I will use stochastic volatility sampling to derive parameters from the BTC data. The derived
parameters will be needed to implement the Heston Options Pricing Model, which will be used to improve on the
Black Scholes Merton (BSM) Options Pricing results that were part of an earlier version of this project [6]. The dis-
cussion on BSM is limited because it is not the primary component of this project. The primary component is the
stochastic volatility sampling that provides parameters for the Heston Model which will output predicted options
prices. The goal of part 2 is to determine if the Heston Model does a better job of predicting options prices than the
BSM. A secondary goal is to analyze the stochastic volatility process and consider methods to implement a predic-

tive model in future applications.

In part 3 of this project I will implement neural networks to predict BTC closing prices. Neural networks are chosen
because of the way they are trained, at each iteration loss is calculated and that loss is applied to parameter tuning
before the next iteration begins. With each back propogation of loss, the model improves and converges to the true
prices (ideally). Neural networks also introduce non-linearity into the model through specific activation functions,

I think that neural networks will perform better at predicting BTC prices than other standard regressions like linear,
log, and cubic spline polynomial regressions [16]]. Part 2 and Part 3 are very different from each other because they
are concerned with deriving different outcomes, so when reading this project, understand that the neural network
parts are unrelated to the options pricing methods done in part 2.



2 Historical Data Analysis

Histogram of Standardized Daily Returns
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Figure 2: Distribution of Standardized Daily Returns

The histogram (Figure [2) shows the standardized daily returns for BTC prices from January 1, 2018 to September
23,2021. Over it I plot a random normal variable over the same time interval (1362) to see how our data compares
to a normal distribution. Overall the spread of the histogram aligns fairly well with the normal density but extends

a little further because of a few outliers in the data. The peak in the daily returns data is nearly twice the size of the
normal distribution implying that there is volatility in the data that is not captured accurately in a normal distribution.
From my analysis I was also able to calculate the sample mean and sample variance, which I will use to solve for the
instantaneous mean and instantaneous standard deviation. The instantaneous mean and standard deviation will be

used in modeling the BTC options prices. The instantaneous mean and standard deviation are given by the following

formulas:
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B
P=nt T2
o
0 =—=
VAL
where

* /i is the sample mean of the log daily returns
* ¢ is the sample variance of the log daily returns

Below are the following statistics for the daily return data (Figure [3)), as well as the calculated true mean and true
standard deviation. From the excess kurtosis we seee that we have “fat tails” meaning that the values on the ends of



the distribution are above the normal level, indicating that future returns will be either extremely large or extremely

small.

I n o2 o? o o Skewness | Excess Kurtosis

6.45e-06 | 0.001536 | 0.001636 | 4.482e-06 | 0.0404 | 0.00211 | -0.44818 4.823

Figure 3: Table of Instantaneous Mean, Instantaneous Standard Deviation, Sample Mean, Sample Variance, Sample
Standard Deviation, Skewness, Excess Kurtosis

2.1 Analyzing Data for Stationarity

The Augmented Dickey Fuller Test is a unit root test that tests for stationarity. A time series has stationarity if a shift
in time does not cause a change in the shape of the distribution of the data. Stationarity correlates with mean, vari-
ance, and covariance remaining constant over time. The null hypothesis in an ADF test is that there is a unit root and
the alternate hypothesis essentially says that the time series has stationarity. The presence of a unit root means that
the time series is non-stationary. The ADF relies on selecting the appropriate regression model. The ADF is applied
to the following model:

Ayp=a+ Bt +yys—1 + 1Ay 1. + 0p 1Ay pr1 + &

where « is a constant, 3 is the time trend coefficient, and p is the lag order of the autoregressive process. [5]

The other test that was used to test the mean-reversion and stationarity of our time series is the Hurst Test. The Hurst
Test relies on the Hurst Exponent which is a measure of the long term memory of a time series. It is an effective
measure for understanding the mean reversion within a time series and the average time it takes until the series re-
verts back to the mean. Mathematically, the Hurst Exponent, H, is defined in terms of the asymptotic behavior of the
re-scaled range as a function of a given time span of a time series, more formally it is denoted:

R(n)

E[S(n)} =CH as n— o0

where
* R(n) is the range of the first n cumulative deviations from the mean
* S(n) is the series sum of the first n standard deviations
* n is the time interval of the observation
» (C'is a constant

A Hurst Exponent value between 0.5 and 1 indicates that the time series has a long term positive autocorrelation
meaning that each successive observation further in time will likely be greater in value than the observation before
it. A Hurst Exponent value between 0 and 0.5 indicates that there is oscillation between each subsequent observa-
tion meaning that a high value will be followed by a lower value and so on in that oscillating pattern. The oscillation
would show that as the time interval progresses there would be some near convergence to a mean. [§]]

From our ADF Test, our p-value is less than the significance level (0.05) but the ADF statistic is larger than any of
our critical values. Because the p value is less than the significance level I can reject the null hypothesis and take the
series to be stationary. However, these results slightly disagree with our Hurst Test results.



From the Hurst Test I am given a corrected empirical Hurst Exponent value of 0.59 which is greater than 0.5, indi-
cating a trending series where high values are often followed by high values. This suggests to us that our data is not
very mean reverting. From the Hurst and ADF test, we know that we have a trending time series with some station-
arity. When we see the plot of the daily returns (Figure [3)), there does seem to be some mean reversion in the time
series.

Plot of Autocorrelation for Lag 1
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Figure 4: Lag 1 Autocorrelation Plot for BTC Closing Price

The autocorrelation plot (Figure [) between BTC Price Today and BTC Price Yesterday shows a strong correlation
in the initial stages of BTC when it’s price was under $20,000. As the price increases the correlation becomes less
strong.

Demeaned Log Daily Returns of BTC 2018-01-02/2021-09-23
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Figure 5: Centered Daily Log Returns of BTC



I derive the half life parameter to determine how long it takes for the series to revert back to a mean (if there is one),
our Hurst and ADF test results imply some weak stationarity in the daily returns, and the plot of the daily returns
shows some mean reversion throughout the time series.

tl/g = ln§2) = TZ’I’L(Q)

A is the decay constant
T is the mean lifetime
t1/2 is the half life

A is the inverse of the mean lifetime which was found through a linear regression between two variables, the change
between each observation in the lagged daily returns, and the difference between each observation in the daily re-
turns. The two values are fit to one another and X is the second coefficient in this formula. The results of this analysis
gave us a half life value of 6.194, meaning that the returns revert back to some mean roughly every six days. The half
life is a required parameter for the Heston Options Pricing Formula.

3 Black Scholes Merton (BSM) Implied Volatility Analysis, Motivations for

Improvement
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Figure 6: BSM Implied Volatility Plot (Volatility Smile)

In prior versions of this project, options prices were derived from historical BTC data using the Black Scholes Mer-
ton Options Pricing Equations [6]. The results can be seen in Figure The implied volatility is derived from the



results of the BSM model and are plotted against the strike price, from Figure [6|we see a “volatility smile” present.
This implies that the mean of our data changes as the strike price increases. Implied volatility increases when the un-
derlying asset of an option is out of the money, or in the money, but not when it is at the money. The volatility in the
data indicates that the BSM fails to accurately model BTC options because the BSM assumes constant volaility. To
improve on the BSM, we will implement the Heston Options Pricing Model which assumes that volatility changes
with strike price and asset price [[11]]. The formula for the Heston Options Pricing model is shown below:

dSt = Tstdt + \/ﬁstths (31)
dv, = k(0 — v,)dt + o /o dW (3.2)

where
» S, = asset price at time ¢
* r =risk free interest rate
* /vy = volatility (sd)
* ¢ = volatility of volatility
* 0 =long term price variance
e k =rate of reversion to 6 (half-life)
* W;® = Brownian Motion of the assets price
» W/} = Brownian Motion of the assets variance

In order to properly implement the Heston Model I will need to derive the necessary parameters using a stochas-

tic volatility sampling that provides values for parameters o, p, 6, and ¢. Before implemeting the Heston Model,

the derived parameters will be tested for accuracy by plotting simulated daily returns against the true daily returns.
The simulated daily returns will also be used to derived estimated closing prices and will be compared against the
true closing prices. The goal of this analysis is to ensure that the parameters the SV simulation provides are accu-
rately representing the true data. One area of concern is the correlation between ;> (Brownian Motion of the Assets
Price) and W}’ (Brownian Motion of the Assets Variance). If they are correlated then the implied volatility will in-
crease with the variance of the returns. If that is the case then the outputs from the Heston Model will not be much
better than the output of the BSM Model. The Heston Model usually has these two parameters correlated and this
will be proven true once we derive the options prices.

3.1 Deriving SV Parameters and Testing for Accuracy

I analyze the Stochastic Volatility (SV) Model to account for shortcomings in the Black-Scholes Merton (BSM)
Model. BSM assumes that the underlying volatility of an asset is constant over the life of the derivative thereby unaf-
fected by changes in the price level of of the underlying security. In the SV model I assume that the volatility of the
underlying price is a stochastic process instead of being constant. Below is the mathematical representation of the
SV model 9] [IL1]]:

cy=(Y1,y2, s Un)T



* y is a vector of returns with mean zero

o yilhy ~ N(0,eh)

* helhi—1, s ¢y 0n ~ N+ ¢(hy—1 — ), 07)
* holp, 6,0 ~ N (1, 7 %55)

2

¢ N(u,0?) is normal distribution with mean y and variance o2

* 0= (u,¢,0,)7 is a vector of parameters where:
* 1 =level of log variance

* ¢ = persistence of log variance

* o, = volatility of log variance

* h = (ho, hy, ..., hy,) = latent time varying process (log-variance process)

Estimated volatilities in percent (5% / 50% / 95% posterior quantiles)
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Figure 7: Estimated Volatilties Derived from Markov Chain Monte Carlo Method

To better understand the nature of the volatility inherent in the daily returns of BTC prices we resample the returns. I
call the function svsample which simulates from the joint posterior distribution of the SV parameters y, ¢, & o along
with latent log volatilities. The function returns the Markov Chain Monte Carlo (MCMC) draws. We fed the daily
return data into svsample and the function is able to do Bayesian regression to find our desired parameters and then
outputs MCMC draws. I create a stocahstic volatility sample from the given daily return data and use that data to
create a volatility plot, trying to predict volatility for 365 days. From the volatility graph (Figure [7) we get the fol-
lowing estimated volatilities for 5%/50%/95% posterior quantiles (1%,3%,8%). These values should be taken with

a serious degree of skepticism as we forecast for 365 days as a theoretical exercise. In reality, any prediction that far
out will be very off the mark in real life.
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The density plots display plots for the density estimates for the posterior distributions of y,0, and ¢. The mean val-
ues of these posterior distibutions will be used to simulate stochastic returns and we will compare these returns to the
true returns. The plots are for our stochastic volatility samples that were calculated using our daily return data. From
the density plots, we see that all three parameters are fairly normal but have varying levels of skewness (Figure [g).

I use these derived parameters to simualte a stochastic volatility process for the same length of time that our dataset
looks at (1358 days). The simulation then provides us with simulated daily returns that can be used to derive BTC
Closing Prices. I will then take the mean squared errror (MSE) of both the simulated daily returns and the derived
BTC Closing prices to see how accurate the stochastic volatility model was.

Figure 8: Paradensity Plots MCMC SV Sampling

Using the derived parameters, the true daily returns are sampled using a stochastic volatility process, which simulates
from a joint posterior distribution from parameters p, ¢, and o. The sampling also provides latent-log volatilities
(ho, hi, ..., hy). The derived parameters are then used to simulate returns for 1358 days. The simulated daily returns
are then plotted against the true daily returns and the MSE is calculated to test the accuracy of the simulation. The
daily returns are then used to calculate simulated BTC Closing prices using the defined formula for daily returns:

Opening Price — Closing Price

Daily Returns = 3.3)

Opening Price

Closing Price = Opening Price(1 - Daily Returns) 34

The above derivation of the closing price is not rigorous and serves merely to test how well our derived parameters
model the data. The next step in this analysis will be to try and develop a preditctive model that can be trained and
tested on data.

Analysis of SV Predictions The derived simulated daily returns when plotted against the true returns in Figure [J]
are near identical except for the fact that the simulated returns are shifted by an interval (Figure[9). This is obvious
because we sampled our data with Lag 1, i.e the model only used one data point prior to calculate the return at the
next point in time. The simulated daily returns are then used to calculate simulated BTC Closing Prices which are
then plotted against the true BTC Closing prices (Figure [I0). The results again show that the data is near identical
except for the shift between the simulated data and the true data.

11



Comparing True Daily Returns to Simulated SV Returns
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Figure 10: SV Derived BTC Closing Prices VS True Closing Prices

3.2 Implementing Heston, Comparing Results to BSM Results

Using the parameters derived from the SV simulation I simulate some BTC call option prices. To derive call option
prices using the SV parameters I take advantage of the Heston Model for pricing options, which differs a little from
the classical Black-Scholes Model (BSM). The Heston Model assumes that volatility is arbitrary and not constant as

12



assumed in the BSM. The Heston Model is set up as follows [[L1]:
I then take advantage of an existing global function called CallHestoncf from the publicly available package NMOF

to calculate the Heston call option prices given the parameters. The volatility data is taken from our SV simulation

over our BTC data and the value for k was calculated prior when we were testing for mean stationarity. The long

term variance is calculated using the global function /rvar. Once I calculate the Heston call option values we then

plot the values against the true call option prices and the BSM derived call options prices. The results show little im-

provement in precision when using the Heston Model versus BSM (Figure [IT). In fact, when we analyze the Mean
Absolute Percentage Error (MAPE) for both Heston and BSM we get values of 0.0129707 (Heston) and 0.01298701
(BSM). When I look at the absolute difference between the results we see that the difference is 1.627¢-05 which is
very small. The plots and the calculated MAPE values tell us that the Heston Model does not improve on the BSM
much at all for our data (Figure [I2).
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Figure 11: Heston Predicted Call Options VS BSM Predicted Call Options, Heston Predicted Call Options VS True
Call Options
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Figure 12: BSM Predicted Put Options VS True Put Options, BSM Call Options VS True Call Options

The BSM Model tracks fairly well with the actual BTC call Option Prices but it is clear from the plot that the model
is not accurately modeling the volatility of BTC Call Option Prices. The true standard deviation that we derived from
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our sample mean and sample variance does not adequately model the volatility inherent in the underlying. We use
the daily risk free interest rate listed on the Federal Reserve’s website. The Fed had r = 5% [10].

Looking at the BSM predicted put prices compared to the real put prices we see that the BSM did a reasonable job
of modelinng Put Option Prices. The BSM predicted put prices gave us zero for most of the predictions, for T=10,
this tracked well with the real put prices but as the strike price K increased the model became less accurate. The BSM
followed the trend of the real data but not closely, and some predictions were very different from the true options
price at that strike price.

To check the put call parity I take our predicted put and call option prices and compare them with the real put and
call options prices. I re-write the put call parity as follows:

C—-P=S—-Ke T (3.3)

I calculate the LHS of (3.3) using both the predicted and real prices and plot the two sets of data on the same plot as
a function of strike price. We see that put call parity does not necessarily hold but the differences in the LHS values
are not drastic.

4 RNN-LSTM Model

Figure 13: LSTM Model Diagram [|14]

A defining feature of cryptocurrencies are their volatility. Investing in cryptocurrencies carries greater risk than in-
vesting in the stock market due to the 24/7 trading structure of cryptocurrencies and because of the legal challenges
that cryptocurrencies must deal with on a frequent basis [[7]. To better forecast BTC prices and BTC options we

will employ a Recurrent Neural Network (RNN) model that utilizes the idea of Long Short Term Memory (LSTM).
A large benefit of RNN-LSTM models is that they are able to derive current observations using previous observa-
tions which allows information to persist throughout the network. By having an inherent “memory” LSTMs are well
suited to forecasting models that are dependent on time series. An issue that arises with standard (’vanilla”) RNNs is
that it reiterates one layer many times over without ever storing the previous data. A vanilla RNN takes data, iterates
that value multiple times through the same layer, each iteration wipes the previous observation and replaces it with
anew value. This process becomes computationally heavy and skews the information over a time series since it has
no memory. The errors in such models can explode as the network updates with each iteration, this problem is seen
in the ”vanishing gradient problem”, whereby the gradient used to update the loss in each layer explodes as it back

propogates through the network [20].

14



LSTM networks work well classifying, processing, and predicting given a set of time-series data. LSTMs were de-
signed as a response to the ’vanishing gradient problem” which occurs with standard RNNs. When training a stan-
dard RNN, the back propagation that updates the error in each layer can tend to zero or infinity due to the large num-
ber of computations required to fully back propogate through the network. LSTMs are utilized because they diminish
the possibility of having a vanishing gradient occur in the back propogation. In the standard RNN, one neural net-
work is repeated a set number of times but each neural network is comprised of one layer, often a tanh activation
function. LSTMs have a similar structure to a standard RNN but differ in that each neuron is composed of four layers
with different activation functions. These layers are connected by a “cell state” which sends information through be-
tween each neuron thus serving as the memory” within the network acting as a conveyor belt that provides memory
to the model [15]]. There are various papers that attempt to improve model performance by manipulating the parame-
ters and number of layers in the model. In this project we do a similar examination to determine the modeling perfor-
mance of RNN-LSTM on BTC prices. However, the examination will show that the model marginally improves and
sometimes worsens as you add hidden layers and change parameters. The best way to improve the model would be
to make the data more robust. One way that can be done is by feeding the model more parameters like the hash rate,
the trading volume, and other statistical measures that can be easily pulled from the internet.

To test the performance of the model I subset the data into four training and four testing subsets [[13]. The data was
split into the following subsets:

Training Testing

Subset 1 [1,200] [201,250]
Subset 2 | [150,349] | [350,399]
Subset 3 | [300,499] | [500,549]
Subset 4 | [450,649] | [650,699]

Figure 14: Model Performance on Training Subsets

The model was analyzed using a standard LSTM model with two hidden layers. The performance of the training and
testing models are listed below:

Training | Average Loss | Average Validation Loss
Subset 1 0.01197 0.009103
Subset 2 0.01181 0.079359
Subset 3 0.021359 0.05739
Subset 4 0.010241 0.005484

Figure 15: Model Performance on Training Subsets

Prediction | Mean Squared Error | Mean Absolute Error
Subset 1 0.00015 0.011955
Subset 2 0.00407 0.05009
Subset 3 0.37679 0.53547
Subset 4 0.15516 0.3611

Figure 16: Model Prediction VS Real Data
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RNN BTC Prediction VS True BTC Price (Scaled) RNN BTC Prediction VS True BTC Price (Scaled)
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Figure 17: Predictions VS True BTC Price Subsets 1 & 2
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Figure 18: Predictions VS True BTC Price Subsets 3 & 4

In Figure [T7]1 show the RNN prediction over the subsets vs the true data (Figure [I7} Figure [I8)). The subset was
drawn from original training data with 800 observations and original testing data with 550 obvservations. The train/test
split of the data results in about a 60/40 split with 60% of the data in the training set and 40% of the data in the test-
ing set. Figure [I9]is the prediction over the testing set.
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RNN BTC Prediction VS True BTC Price (Scaled)
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Figure 19: Prediction over Test Data, 2 Hidden Layer LSTM

Overall we see that the prediction over the testing set does well in predicting BTC prices for the first 300 observa-
tions in the testing set. However from observations 300-500 accuracy decreases as the predicted price is consistenly
less than the true BTC price. Analytically this is expected because of the sharp increase in BTC’s price that began
around July 2020. The prices in the later part of the time series are more than double the prices that the model was
trained on in the first 60% of the historical time series data.

S Improving on LSTM, Implementation of RNN-GRU Model

LSTM GRU

forget gate cell state reset gate

- I T
input gate output gate update gate
sigmoid tanh pointwise pointwise vector
multiplication addition concatenation

Figure 20: LSTM Diagram Compared to GRU Diagram [17]]
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5.1 Understanding Gated Recurrent Units (GRU)

To improve on the LSTM NN model implemented in the previous section we implement Gated Recurrent Units
(GRU). GRU:s are considered a more streamlined and efficient version of LSTM NN because it is less costly com-
putationally and provides greater nuance in how memory is stored in the neural network. The main features of GRUs
occur in the hidden unit between the input and output layers. Within the hidden layer there is a method to pass on
significant/important” info and a method to “reset” and drop out outputs that contribute little to the overall solution
[L16].

The hidden layer is composed of an update gate and reset gate that determine what information is carried over from
the prior state and what information is removed. The gates mathematically are vectors with values between 0 and 1,
the constraints allow us to perform convex operations which is crucial to allow for back propogation and stochastic
gradient descent. The reset gate carries short term memory through the network while the update gate carries long
term memory through the network. Both work in tandem to create a candidate hidden state that determines how
much subsequent output will be influenced by short term and long term memory. Mathematically the reset and up-
date gate are defined as follows:

Ry = o(XiWar + Hi—1 Wiy + by) (5.1
Zy = 0(X¢Waz + Hi 1 Wi +02) (5.2)
where

* R; € R™*" is the reset gate

o Z; € R"*" is the update gate

o Wyp, Wy, € RI*M gre weight parameters

e Wiy, Wy, € R»*h are weight parameters

* b, b, € RY" are bias terms

* o() is a sigmoid function

The candidate hidden state is then constructed by the integrating the reset gate with the standard network updating
mechanism, meaning that the hidden state is activated just as any other input would in that layer. The hidden state is
then defined as:

H; = tanh(X; Wy, + (R 0 Hy—1)Why, + by,) (5.3)

where
o Wy, € RIXPjgq weight parameter
o« Wi, € RPXPiga weight parameter
o by, € R1¥" ig a bias term
* ois a Hadarmard element wise multiplication operator

The output is a ’candidate” which is used to determine the final output of the hidden state, that output will then be

sent through an activation function and output a final prediction. The hidden state is determined once we incorporate
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the effect of the update gate, this final step determines how much value is placed into short term memory and how
much value is placed in long term memory. Mathematically, the final update step of the GRU network is defined as:

H,=Zi0oH, 1+ (1—Z) o H, (5.4)

When Z; (the update gate) is close to 1 we retain the old/previous state, when it is closer to O we take choose to use
the updated state. This update step allows us to filter prior time series data out of the network to create more accurate
predictions. This selection step also helps mitigate the vanishing gradient problem that occurs with vanilla RNNs
because due to the structure of the network, any back propogation will be bounded between (-1,1) or (0,1) thereby

negating the impact of a vanishing/exploding gradient [17].

5.2 GRU NN Implementation Results

GRU Predicted BTC Prices VS True BTC Prices (Out-of-Sample)
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Figure 21: GRU Predicted BTC CLosing Prices VS True BTC Closing Prices (Out of Sample)
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Figure 22: GRU Predicted BTC CLosing Prices VS True BTC Closing Prices (In Sample)

The in-sample mean squared error (MSE) was very low (0.14) which tells us that our GRU NN learned the training
data very well (Figure 22). However when we make predictions out of sample we get an MSE of 8.41 which is very
high. Looking at the above out of sample plot we see that this makes sense, our model performed terribly against
the true values. A big reason for this has to due to with the BTC price time sequence. We trained our model on data
that came before the big price spikes that BTC saw during the pandemic. No matter how well the model learned the
training data, it would be very difficult for the model to predict a jump of $20k in 2020 and that is why we obtain

such a poor MSE value out of sample.
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6 Conclusion

From my work we see that the BTC option prices derived using the Black-Scholes Merton (BSM) Option Pricing
Method tracked the trend of the real option prices well but was not an adequate representation of the true values.
The BSM call prices were more accurate than the BSM put prices. The BSM call prices accurately predicted many
call option prices and the amount of variance from the true value remained relatively consistent when comparing the

numbers and the plots.

BSM and Heston Option Price Analysis The BSM put option prices gave us many zero and near zero values, far
more than in the call option estimates. However, there were many instances of put option prices being zero in the
Derebit dataset, and the BSM correctly predicted those values. But looking at the trend lines of both the predicted
and true values, it is clear that the predicted values from the BSM are far more linear in their trend. This implies that
the volatility inherent in BTC option prices was not properly captured through the BSM pricing model. The Heston
model was used to try to account for the volatility in the BTC prices because the Heston model uses volatility data
as inputs to find options prices. However, the Heston predicted options prices provided no significant improvement
from the BSM options prices. The Heston model used the simulated volatilities that I derived using MCMC stochas-
tic sampling. Although the Heston model provided no significant improvements over the BSM, the volatilities that
were used as parameters worked very well when used them to model BTC closing prices given our crude implemen-
tation (Figure [I0). The outputs are not a model but serve as good sanity check to ensure that the volatilities that were
derived from the MCMC sampling are representative of the true data. The paper [21] we referenced in class found
success modeling BTC options using a SV and SVCJ model that properly accounted for the jumps using a combina-
tion of poisson, normal, and exponential distributions. Next steps would be creating and training a predictive model
using the stochastic volality processes, similar to the SVCJ paper that used a stochastic volatilty process in conjunc-
tion with random Poisson distributions to get predicted prices [21]. Moving forward with this part of the project, it
will be important to implement a stochastic volatility model to derive proper statistical parameters. The SV sampling
and rudimentary modeling that we did showed that the derived parameters from the SV sampling are indicative of
the true behavior of BTC prices, next steps would be to figure out a way to design a model that can be applied to a
training set and then tested to predict prices on an unknown set of data.

Analysis of Neural Network Performance The second half of this project was implementing two types of neural
networks and analyzing their performance. A Long-Short-Term-Memory Neural Network (LSTM-NN) and a Gated
Recurrent Unit Neural Network (GRU-NN) were implemented because they are designed to store memory through-
out the model thereby being well suited for time series data. Both models worked very well in-sample but strug-
gled out-of-sample. The out of sample predictions tracked the trends of the true prices well but could not match the
magnitude of the prices. This can be attributed to the training data being drastically different from the testing data.
The testing data contained BTC prices between $20,000 and $60,0000 and thet training data was below $20,000.
The model had no indication of this drastic increase in prices and was assuming that prices would not explode past
$20,000 in the way that it did in real life. Implementing a random jump process into the neural networks could im-

prove performance but it is doubtful it would improve much if we use the same set of training data.

Next Steps, Considerations for Improvement To improve the performance of the neural networks I would need
to better prepare the data so that the model can better predict drastic jumps in prices. Adjusting the training data by
segmenting them into subsets might improve the model’s performance over smaller intervals but might not change
anything when I test the model on the out of sample data. Cross validation would be the preferred method as it is
generally known as a great way of improving model accuracy. Cross validation is a resampling method that utilizes
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different portions of the data to test and train a model in different iterations. You continuously partition the data into
complementary subsets and train the model on each subset, we then test the model by predicting on a subsequent
complementary subset and comparing results. The idea is to do this enought times to combine/average measures of
fitness in prediction to derive more accurate estimates of model prediction performance [18]]. Also, more time can

be invested in tuning the parameters and altering some components of the neural networks to try and get better re-
sults, however this is unlikely to improve the results much as playing with the layers of neural networks is more ar-
bitrary and has been shown to marginally improve performance from standard neural network set ups. Truthfully, a
better type of neural network is needed to accurately model BTC prices. Looking further ahead, Deep Reinforcement
Learning would probably be the best method for accurately modeling the prices because there is constant feedback
within the network that allows the model to improve faster than in a traditional supervised or unsupervised learning

environment [22].
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